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The pathogenesis of allograft (dys)function has been increasingly studied
using ‘omics’-based technologies, but the focus onindividual organs has
created knowledge gaps that neither unify nor distinguish pathological
mechanisms across allografts. Here we present acomprehensive study of
human pan-organ allograft dysfunction, analyzing 150 datasets with more
than 12,000 samples across four commonly transplanted solid organs (heart,
lung, liver and kidney, n=1,160, 1,241,1,216 and 8,853 samples, respectively)
that we leveraged to explore transcriptomic differences among allograft
dysfunction (delayed graft function, acute rejection and fibrosis), tolerance
and stable graft function. We identified genes that correlated robustly with
allograft dysfunction across heart, lung, liver and kidney transplantation.
Furthermore, we developed a transfer learning omics prediction framework
that, by borrowing information across organs, demonstrated superior
classifications compared to models trained on single organs. These

findings were validated using a single-center prospective kidney transplant
cohortstudy (a collective 329 samples across two timepoints), providing
insights supporting the potential clinical utility of our approach. Our study
establishes the capacity for machine learning models to learn across organs
and presents a transcriptomic transplant resource that can be employed to
develop pan-organ biomarkers of allograft dysfunction.

Organ transplantation is a crucial therapeutic option for individu-
als with end-stage organ failure, providing a mortality benefit and
improved quality of life'*. Long-term graft survival variesamong organs
(82% for kidney transplants*, 80% for liver’, 59% for lung® and 72.5% for
heart’), but longevity is universally limited by allograft dysfunction, a
termthat encompasses a broad range of pathologies. Dysfunction can
bedrivenbyischemiareperfusioninjury manifesting as delayed graft
function (DGF) (or primary non-function)®’, activation of the adaptive
immune response, which initiates rejection and tissue destruction'*",

or maladaptive repair responding toinjury cues that replaces function-
ing parenchyma with extracellular matrix and culminates in fibro-
sis'>*, Molecular hallmarks of allograft dysfunction have already been
established from organ-specifichuman studies™ ", particularly kidney
transplantation, which is the most frequently performed transplant
surgery worldwide',

Numerous technological advances have supported rapid evolution
ofinsilicoresearch, revolutionizing understanding of allograft pathol-
ogy atamolecular level, with the promise to transform our approach
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to healthcare. The complex data encapsulated by high-resolution
multi-omics approaches provide aglobal assessment of tissue micro-
environments, capable of dismantling the interaction between host
and recipient, and the ensuing alloimmune response®. Precise defini-
tions of cell type and functional state facilitates analysis of more subtle
allograft (patho)physiology compared to the limited interpretation
arising from clinical and histological parameters. Despite a plethora of
genomic knowledge and identification of potential biomarkers'>*° 2,
there is limited consensus among organs and restrained incorpora-
tion of these data into routine clinical practice to supersede current
(non-molecular) diagnostic standards for monitoring allograft func-
tionand modifying treatment. This has unacceptable implications for
transplantrecipientsin which their survival and/or that of the graft has
not advanced substantially in the past two decades.

A critical challenge in the field lies in the assumption that trans-
planted organs exhibitinherent molecular heterogeneity in response
to cellular injury, rejection and repair. Studies previously demon-
strated that markers predictive of dysfunction in one transplant organ
cohort failto show concordance when applied to other allografts®*.
Analyticalaccuracyis further complicated by the use of different tech-
nologies to generate transcriptomic signatures?. To partly address
these obstacles, an expansive, manually generated meta-analysis
from pre-clinical and human transplant studies was performed to
create the Banff Human Organ Transplant (BHOT), a gene array that
reflects global allograft dysfunction”. However, the current lack of a
definitive quantitative capacity to compare molecular associations
across transplant datasets significantly hampers our ability toacquire
a comprehensive understanding of clinical pathologies across all
transplanted organs.

Here we introduce the concept of ‘pan-organ allograft dysfunc-
tion’, positing that pathophysiological genomic signatures are agnostic
of organ type. To support this notion, we curated publicly available
transcriptomic datasets across the four most common solid organs
transplanted in humans, profiling three main forms of organ dys-
function (DGF, acute rejection and fibrosis), in addition to transplant
tolerance, with the aim of identifying a cohort of conserved genes for
each phenotype. Furthermore, we developed, implemented, evalu-
ated and validated anovel transfer learning framework that leverages
information across different organ transplants to develop a superior
transcriptomic signature. We provide this comprehensive curated
datasetasapublicly available resource. Combined, these resources pro-
vide aninsightinto the pan-organ hallmarks of allograft dysfunction.

Results

Pan-organ ResOurce for Molecular Allograft Dysfunction
(PROMAD)

We postulated that the pre-existing transcriptomic datasets from
human samples, across multiple transplanted organs (kidney, heart,
liver and lung), displaying varied clinical pathologies (DGF, acute rejec-
tion, fibrosis and tolerance) would facilitate generation of a compre-
hensive gene expression atlas of allograft dysfunction. We curated
available datasets incorporating microarray, bulk tissue RNA sequenc-
ing (RNA-seq) and single-cell RNA-seq technologies (Extended Data
Fig.1).Ourlarge-scale atlas comprises 150 datasets and 12,970 samples
(Fig.1and Supplementary Table 1). This resource is publicly available
viahttps://shiny.maths.usyd.edu.au/PROMAD/. We leveraged this atlas
to identify pan-organ molecular signatures that correlate with clini-
cally defined allograft pathologies and evaluated their effectiveness
as organ-agnostic predictors of (dys)function.

Shared molecular markers in allograft rejection

Areductionist understanding of acute rejection is that of an orches-
trated adaptive immune response to the allograft, but this fails to
reflect the complexity of interactions between infiltrating recipient
immune cells and the donor parenchyma. Rejection is not necessarily
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Fig.1| The PROMAD atlas: acomprehensive map of allograft dysfunction.
The PROMAD atlas encapsulates an extensive array of data, presenting a
multifaceted view of allograft dysfunction through whole blood samples,
PBMCs and allograft biopsies. It comprises data from heart, lung, liver and
kidney transplants, encompassing four transplant outcomes, namely DGF,
rejection, fibrosis and tolerance. The collection and curation process resulted
inarepository of 150 datasets consisting of 12,765 molecular samples derived
from more than 20 countries worldwide. We performed analysis on PROMAD,
identifying common molecular and cellular signatures of dysfunction

across organs and using our novel transfer learning framework to assess the
effectiveness of organ-agnostic predictions of allograft dysfunction. This figure
was created with BioRender.

easy todiagnose histologically due toinherent risks of tissue sampling
and consensus-driven histopathological scoring systems that remain
observer dependent. To detect pan-organ mechanisms of acute rejec-
tion, we used our atlas to identify consistently differentially expressed
genesin allografts with biopsy-provenrejection. We identified 54 data-
setsencompassing 40 kidney, five lung, five liver and four heart studies,
each comparingstable with acutely rejecting grafts. To avoid potential
loss of biologically relevant variation unique to each study, we chose
not to employ batch correction methods when combining data and,
instead, employed a Pvalue combinationmethod to reduce theimpact
of technical artifacts between datasets®**. We identified genes associ-
ated with acuterejection unique to each organaswell asacommon set
of 158 genes that were differentially expressed across all four organs,
which was nearly 20 times higher than the eight genes expected by
chance (P=5.44 x107%; Fig. 2a). Genes encoding chemokines (CXCL9,
CXCL10 and CXCL11), granzymes (GZMA and GZMB) and cell surface
receptors (CD2, CD8A and CD53) were associated with rejection in
kidney, heart, liver and lung transplants (Fig. 2b), demonstrating a
unifying pan-organ molecular marker.

Toidentify the cellular origin of this pan-organ molecular signal,
we used six single-cell RNA-seq datasets across multiple solid organ
transplants comparing acutely rejecting and stable allografts. The
Cepo framework was used to generate cell type importance statistics
for each gene in each of the 36 recognzed cell types defined in our
atlas (Extended Data Fig. 2). Using Cepo statistics and our set of 158
pan-organrejection genes, we demonstrated differential enrichment
inmyeloid cell subsets from biopsies with acute rejection (Fig. 2cand
Supplementary Fig. 1). We then aligned cells from our PROMAD atlas
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toacommon low-dimensional embedding (Fig. 2d and Supplementary
Fig. 2) where we confirmed that the pan-organ acute rejection gene
signature was highly expressed in myeloid cells (Fig. 2e,f).

Liquid biopsy molecular markers in allograft rejection
Minimally invasive liquid biopsy tests provide a substantial advan-
tage for monitoring allograft health, but commercially available
markers have limited sensitivity and specificity to facilitate clinical
decision-making. Within PROMAD, we analyzed 23 datasets of whole
blood samples, comprising two liver, three heart and 18 kidney trans-
plants witha diagnosis of acute rejection, and we compared molecular
changes to patients with stable allograft function (Supplementary
Table1) using the same approach as for tissue samples. Due to the het-
erogeneity of rejection phenotype classifications in datasets, across
organs and over time, we deliberately classified abroad, organ-agnostic
signature for rejection. We identified 77 genes that were consistently
associated withanacute rejection phenotypeinliquid biopsies across
all organs (Extended Data Fig. 3), which was more than expected by
chance (when using a combined P value threshold of P<1x107), and
genes were predominantly involved ininflammation (CASP1, CASP4 and
IRF4) and regulation of immune function (CD28, CD36 and FCERIG)
(Extended DataFig. 3). We subsequently mapped these 77 genesontoa
curated set of single-cell RNA-seq datasets derived from liquid biopsy
samples within our atlas, demonstrating overexpression in CD14*
monocytes (Supplementary Fig. 2), in keeping with the findings in
biopsy samples.

Transfer learning identifies a pan-organ rejection model

We developed a Transferable Omics Prediction (TOP) framework to
assess the reliability of predictive markers of acute rejection derived
fromliquid biopsies. Classification models that are constructed using
reference-free methods, as opposed to traditional batch correction,
have been shown to be robust to technical and biological variabil-
ity>°~**and, thus, transferable across cohorts, biological tissues and
sequencing assays®. Traditional batch correction methods that rely
on common matrix factorization methods are not suited to building
models with confounding factors (Supplementary Methods). TOP
relies on akey feature engineering step that we previously showed to
be self-normalizing®. Creation of a log-ratio matrix of the most dif-
ferentially expressed genes across all datasets and leveraging these
relative changes in gene expression enhance the model’s robustness.
Asthe utility of TOP extends beyond PROMAD, we made the framework
available on the Bioconductor Project™.

Toevaluate theimpact of cross-organlearning, the TOP framework
was applied to predict allograft rejectionacross 23 liquid biopsy data-
sets. Althoughweidentified molecular mechanisms of acute rejection
thatare consistent across organs, itisnot clear whether these markers
are superior to those derived from organ-specific data. To compare

their predictive performance, a pan-organ model was recursively
built on 22 datasets using TOP, with one dataset being left for model
evaluation. Organ-specific models were also constructed using the
TOP framework and evaluated with the same leave-one-dataset-out
strategy. Our findings revealed enhanced model performance for
models trained on all available organs compared to solely the organs
being predicted (Fig. 2g), illustrating the robustness of a pan-organ
molecular signal. In conventional, organ-specific models, the mean
areaunder thereceiver operating characteristic curve (AUC) for heart,
kidney and liver predictions was 0.55, 0.70 and 0.55, respectively. In
contrast, the pan-organ model demonstrated improved performance
(mean AUC of 0.63, 0.74 and 0.71 for heart, kidney and liver datasets,
respectively). Furthermore, by varying the number of featuresincluded
inthe models, only 50 gene ratios were required to construct effective
models (Extended DataFig.4). These results demonstrate the potential
of cross-organ learning as a valuable approach toimproved accuracy
and applicability of models predicting allograft rejection.

To determine the impact of dominance of kidney allograft data
in PROMAD on a pan-organ biomarker, we performed a compara-
tive analysis of weighting schemes. We employed multiple weighting
strategies to ensure equal contribution from the training sets of each
organ (Extended Data Fig. 5). The benefits of equal organ weighting
becameevident when contrasted against a naive integration strategy,
whichresulted in akidney-dominant model due to the distribution of
the training set. Notably, performance in kidney datasets was supe-
rior when other organs were weighted (Extended Data Fig. 4), further
showcasing the advantages of adopting an organ-agnostic diagnostic
approach over organ-specific models.

Thebenefits of areference-free dataintegration method, such as
the TOP framework, became apparent when considering dataintegra-
tionacross platforms (microarray and RNA-seq). To demonstrate how
TOP allows for integration across platforms, we compared other inte-
grationmethods with our TOP-based approach. We demonstrate that
TOP, withits ratio-based normalization, facilitated cross-technological
application more adeptly than naive normalization and batch correc-
tion methods (Extended Data Fig. 4).

Validation of a pan-organ liquid biopsy for allograft rejection
Currentbiomarkersinorgan transplantation are limited in their ability
toinform clinical decision-making®*; however, high-throughput assays
offer a potential method for biomarker identification. We validated our
pan-organ findings using the Australian Chronic Allograft Dysfunction
(AUSCAD) study, a prospective, single-center study of kidney and kid-
ney-pancreas transplant recipients. This cohort contains clinical and
histopathological dataas well as paired 3-month protocol biopsies and
blood collected and sequenced from n =70 patients.

We compared the performance of three models in predicting
acute rejection in AUSCAD: a logistic regression model built on

Fig.2|Identification of a pan-organrejection signal across solid organ
transplantation. a, Venn diagram showing the overlap and uniqueness

of differentially expressed genes between biopsy samples from allografts
experiencing acute rejection and otherwise stably functioning grafts. The
number of overlapping genes (and number of genes expected by chance).

b, Heatmap of the top 50 rejection-specific genes, with each column representing
adatasetand each row a gene. ¢, Box plot of Cepo enrichment scores of genes
frombin cell types from acute rejection and stably functioning grafts (n = 6 and
n=16Dbiologically independent control and allograft rejection (AR) samples
were used, respectively). d, t-SNE plot of merged single-cell RNA-seq datasets,
with cells colored by cell type classification. e, t-SNE plot of merged single-cell
RNA-seq datasets, with cells colored by average expression of genes fromb.

f, Violin plot depicting the expression of rejection markers across minor cell
types. The x axis represents different cell types, and the y axis represents the
average expression of the rejection gene set markers from b. The width of each
violin plot corresponds to the density of expression values for each cell type.

g, Box plot of liquid biopsy dataset model performance measured by AUC,
comparing the performance of organ-specific models from heart (n = 3 datasets
from 65 biologically independent patient samples), kidney (n =18 datasets from
2,257 biologically independent patient samples) and liver (n = 2 datasets from
100 biologically independent patient samples) compared to the pan-organ
model (n =23 datasets from 2,422 biologically independent patient samples).
Each pointis anevaluation of model performance on anindependent dataset.
Points that are joined by aline represent the same dataset. h, ROC plot of three
models applied to AUSCAD: Pan-Organ model (trained on all peripheral blood
datasets in PROMAD), Kidney-specific model (trained on all kidney transplant
peripheral blood datasets in PROMAD) and Clinical model (creatinine, eGFR and
serum albumin). Each model was evaluated using the AUC. Box plotsincand g
show Q1, median and Q3, and the lower and upper whiskers show Q1 - 1.5x IQR
and Q3 +1.5xIQR, respectively. AT, alveolar type; ILC, innate [ymphoid Cell; IQR,
interquartile range; NK, natural killer; Q, quartile.
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Fig.3| PROMAD identifies aglobal indicator of dysfunction in allografts.

a, Heatmap of the top 50 fibrosis-specific genes, with each column representing
adataset and each row agene. b, Scatter plot of association statistics between
native and transplant organ fibrosis. The top 10 genes in each direction,
indicating their degree of change between fibrotic and stably functioning grafts,
are highlighted. c, Bar plot of pathways enriched for genes that are differentially
expressed in transplant organ fibrosis but not in native organ fibrosis. Gene

set enrichment was evaluated using a two-sided Wilcoxon rank-sum test. Each
bar represents one Gene Ontology pathway where Pvalues were adjusted for

multiple comparisons using Benjamini-Hochberg correction. d,e, Pair plots of
genes associated with DGF, acute rejection and fibrosis when compared to stable
functioning grafts. The pointsind are colored according to their appearance in
the BHOT NanoString panel (orange), and genes in e are red if they appeared in
the data-derived gene set. The top right panels show the correlation (Corr.) of
association statistics for each gene. ROC curves compare BHOT (orange) and

the data-derived panel (red) in predicting DGF (f), biopsy-proven acute rejection
(g) and biopsy-proven fibrosis using the AUSCAD study as an external validation
cohort (h). ROC, receiver operating characteristic.

clinical data (estimated glomerular filtration rate (eGFR), creatinine
and serum albumin), a TOP model (trained on PROMAD data from
kidney transplant patients) and, finally, our TOP model trained on
all samples (Pan-Organ liquid biopsy model). We observed that our
pan-organ model (AUC = 0.81) outperformed both gold-standard clini-
calinformation (AUC = 0.58) and kidney-specific models (AUC = 0.70)
in predicting rejection from whole blood samples (Fig. 2h). These
results underscore the diagnostic capability of a pan-organ model,
positioning it as a potential alternative to both traditional and
organ-specific methodologies. However, our intention is not to pro-
vide an alternative to a biopsy but, rather, to demonstrate the benefit
of adoptinganon-invasive prediction tool that leveragesinformation
across organs.

Molecular characteristics of allograft fibrosis

Fibrosisis amaladaptive repair process occurringin response to tissue
injury, characterized by excessive deposition of extracellular matrix
thatsignificantly challenges the long-term success of organ transplan-
tation. Toinvestigate the molecular characteristics of pan-organ allo-
graft fibrosis and to determine whether its genomic signature differed
from native organ fibrosis, we curated 14 datasets from liver, kidney and
lung allografts with biopsy-proven fibrosis compared to stable graft
function (Supplementary Table 1). We identified 57 genes that were
differentially expressed across all organs (when using a combined P
value threshold of P<1x107), with increases ininflammation (CASP1,
TLR7 and TNFAIP8), cell surface markersinvolved inimmune recogni-
tion (CD27,CD52 and CD74) and HLA (Fig. 3a). These findings support
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the notion thatimmune cell activity is a significant contributor to the
development of allograft fibrosis.

It is unclear whether similar immunological activity portends
development of fibrosis, and we investigated whether our gene set
was predictive of fibrosis in stable allografts. Our atlas contained three
datasets where grafts were prospectively followed for development
of fibrosis. There was high concordance between genes that were
predictive of fibrosis and those differentially expressed in fibrotic
grafts (Extended Data Fig. 6), demonstrating a conserved process
thatunderpins chronicallograftinjury. We then explored whether this
signature was preserved in native organs (Supplementary Table 2).
Although the analysis demonstrated some conserved genes (Fig. 3b),
there were significant disparities in allograft fibrosis with expression
ofimmune-related pathways, including interferon signalingand T cell
receptor activation (Fig. 3c).

Wethenused single-cell RNA-seq datafrom fibrotic kidneys within
PROMAD and compared our pan-organ fibrosis markers (Fig. 3a)
against the expression profiles within kidney cell types (Extended
DataFig.7).T cells and macrophages demonstrated enriched expres-
sion of fibrosis-associated genes (Extended Data Fig. 7), supporting
the hypothesis thatimmunological activation drives allograft fibrosis
and representing a potential therapeutic niche.

Comprehensive pan-organ dysfunction gene set

Using PROMAD, we evaluated the performance of an established
diagnostic tool, the BHOT panel, and compared the performance of a
data-derived alternative. The BHOT panel is amanually curated array
of 770 genes generated to identify allograft injury. Tocompare BHOT’s
robustnessin diagnosing general allograftinjury, we first ranked each
gene in order of combined change across three allograft pathologies
in PROMAD (DGF, acute rejection and fibrosis). This analysis dem-
onstrated substantial concordance between gene expression from
acutely rejecting and fibrotic grafts (Extended Data Fig. 8), and the
BHOT panel was able to clearly separate these pathologies (Fig. 3d).
However, there was limited capacity to differentiate DGF. Acknowledg-
ing thislimitation, we constructed a data-derived panel that surveyed
global allograft dysfunction. We identified aset of 500 genes that were
overexpressed in these pathologies across all organ transplants. This
new data-derived gene set contains 400 genes not currently usedin the
BHOT diagnostic panel (Extended Data Fig. 8) that was able to identify
changesin all selected forms of allograft dysfunction (Fig. 3e).

Validating the data-derived gene set using the AUSCAD cohort
Using prospectively collected kidney allograft biopsy samples from
AUSCAD, we compared our data-driven gene set from PROMAD with
the established BHOT genes in delineating DGF, acute rejection and
fibrosis. The data-driven gene set was able to predict DGF in this vali-
dation dataset (AUC = 0.89; Fig. 3f) compared to BHOT (AUC = 0.79;
Fig. 3f). Furthermore, BHOT and the data-driven gene set performed
equally well in classifying acute allograft rejection (AUC = 0.90 ver-
sus AUC = 0.93) (Fig. 3g) and fibrosis (AUC = 0.83 versus AUC = 0.81)
(Fig.3h).

Biomarkers of allograft tolerance and viability

Our curated atlasincluded eight datasets from spontaneously tolerant
transplantrecipients (five datasets fromwhole blood and three datasets
from peripheral blood mononuclear cells (PBMCs)) (Supplementary
Table 1). True biological tolerance in organ transplantation occurs
infrequently (with the exception of liver allografts)* %, Recognizing
its rarity, we employed PROMAD to explore the potential benefits of
pooling datasets from this uncommon outcome. We identified 38 genes
that were differentially expressed across whole blood (Fig. 4a) and 45
genes that were expressed across the remaining three PBMC datasets
(Fig.4b).Both gene signatures implicated suppression of theimmune
response and regulation of T cell proliferation (Fig. 4d) common to

both kidney and liver transplant tolerance. Building on our previous
observation that transfer learning models constructed from periph-
eral blood were capable of leveraging information across organs, we
assessed this capacity in the context of allograft tolerance. Our findings
revealed enhanced model performance when trained on all available
organs compared to only the organ being predicted (Fig. 4c), again
underscoring the benefits of a pan-organ framework in identifying
allograft outcomes.

Predicting long-term graft outcomes from implantation data
Pre-implantation biopsies, particularly for donor kidneys, have been
used to determine organ quality, particularly in the context of marginal
donors. Several studies correlated baseline histological characteristics
with post-transplant function®**° and graft survival***. We constructed
a TOP model from seven datasets comprising 279 pre-implantation
biopsies from liver and kidney transplants (Supplementary Table 1).
Each dataset compared pre-implantation molecular markers from
grafts with DGF to grafts that functioned immediately. Genes most
predictive of DGF included immune cell surface markers (CD3D, CD48,
CD52 and CD72) (Fig. 4f). DGF can be mitigated through the use of
machine perfusion technology that provides metabolic support for
the allograft. We then employed the pan-organ prediction model to
calculate the probability of an organ with a pre-implantation biopsy
developing DGF before and after normothermic machine perfusion
(NMP). Notably, the probability of DGF developing decreased signifi-
cantly after brief (<2 h) versus longer (>6 h) periods of NMP (Fig. 4e).
Our modelwas also effective in predicting DGF or primary non-function
inliver and kidney transplants (AUC = 0.89) (Fig. 4g).

Discussion
In this study, we provide a comprehensive integration of transcrip-
tomic data from multiple solid organ transplants, demonstrating the
potential of aconsolidated resource. By assembling an unprecedented
150 transcriptomic datasets, encompassing more than 12,000 sam-
ples, across the four most commonly transplanted organs inhumans,
we successfully identified shared molecular signatures relevant to
allograft rejection, fibrosis, DGF and tolerance. In addition to these
findings, we developed a novel transfer learning framework capable
of borrowing information across organs that provides a harmonized
coordinated analysis. Using this framework, we demonstrate the
potential of pan-organ molecular signatures that can subsequently
be interrogated in pre-clinical studies and adapted for clinical use as
biomarkers. The signatures consistently outperformed organ-specific
models and pre-existing gene panels that are transitioning from theo-
retical to commercial use, attesting to the translational potential of a
pan-organ paradigm. These analytical vignettes alsoillustrate the util-
ity ofacomprehensive pan-organ atlas to validate, identify or develop
transcriptomic signatures that align with known allograft pathologies.
Despite considerable advances in technologies that provide
detailed molecular information, the field has failed to methodologi-
cally leverage these data in a way that improves diagnostic accuracy
and guides clinical decision-making. Interrogation of individual organs
analyzed by different technologies, such as NanoString, microarray or
RNA-seq, has hindered identification of unified pathophysiological
processes that contribute to allograft dysfunction and failure. Identi-
fication of conserved pathways that govern the interactions between
donor parenchymaand the recipientimmune response will influence
cellular and molecular understanding, enable application to clinical
practice and design of surrogate endpoints for clinical trials as well as
expeditethe development of therapeutic and biomarker opportunities.
Apivotalfindingin ourstudy, made possible through theinterroga-
tion of PROMAD, is the identification of acommon myeloid cell popula-
tionas the origin of our pan-organ molecular markers relevant to acute
rejection. These data support previous publications in pre-clinical
transplant models demonstrating that CD8" effector T cell migration
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Fig.4 | The PROMAD atlas reveals pan-organ markers for allograft tolerance.
a,b, Heatmaps of the top 20 genes implicated in allograft tolerance, with each
column representing a dataset and each row agene. a corresponds to datasets
that sampled PBMCs, and b corresponds to whole blood datasets. ¢, Box plot of
model performance measured by AUC, comparing the performance of organ-
specific kidney (n = 2 datasets from 68 biologically independent patient samples)
and liver (n =3 datasets from 52 biologically independent patient samples)
models compared to the pan-organ model (n = 5 datasets from 120 biologically
independent liver and kidney patient samples). Each point is evaluation of
model performance on anindependent dataset. Points that are joined by a

line represent the same dataset. d, Bar plot of pathways that are enriched for
genes differentially expressed in whole blood from tolerant recipients. Gene

set enrichment was evaluated using a two-sided Wilcoxon rank-sum test. Each
bar represents one Gene Ontology pathway where Pvalues were adjusted for
multiple comparisons using Benjamini-Hochberg correction. e, Box plot of
predicted early allograft dysfunction risk on a logit scale. Each dataset contained

biopsy samples before and after NMP. A two-sided ¢-test was used to determined
significance levels between the groups (***P < 0.001, **P < 0.01and *P < 0.05).
Datasets had a varying number of biologically independent samples before and
after NMP, respectively (n=10,10,P=0.006;n=6,6,P=0.041;n=>5,10,P=0.114;
n=6,6,P=0.157;n=6,6,P=0.008;n=5,6,P=0.793).f, Network plot of model
coefficients for predicting DGF. Each line joins the two genes into aratio, where
the weight of the line corresponds to the magnitude of the model coefficients.
Linesinred and blue are positive and negative coefficients, respectively. g, Box
plot of model performance (AUC) from pre-transplant biopsiesin predicting
DGF (n =7 datasets from 279 biologically independent patient samples), acute
rejection (n =3 datasets from 195 biologically independent patient samples) and
fibrosis (n =2 datasets from 124 biologically independent patient samples). Box
plots from ¢, e and g show Q1, median and Q3, and the lower and upper whiskers
show Q1 -1.5xIQRand Q3 + 1.5 IQR, respectively. IQR, interquartile range;
PreTx, pretransplantation; Q, quartile.

in the context of bone-marrow-derived antigen presenting cell (APC)
presentation of alloantigen*® is necessary for monocyte-derived APC
maturation* and initiation of rejection*, and myeloid cells acquiring
immunologic memory are a barrier to transplantation success*. The
breadth of data offered by PROMAD has allowed us to translate and vali-
date these findings to human allografts, which has been corroborated
inpreviousstudies demonstrating APC-T cell co-localization inkidney
transplants”, increased prevalence of CD16" monocyte/macrophages
in rejecting heart transplants*®*° and resident macrophages tailor-
ing immune responses to lung allografts®. Furthermore, our liquid
biopsy sample analysis revealed concordant transcriptomic changes
inmyeloid cells. Although the differentially expressed genes between
blood and tissue samples were distinct, our analysis of the PROMAD
atlas has revealed therapeutically actionable insights, emphasizing
that targeting myeloid-specific responses presents a viable alternative
to modulate alloimmunity®"*,

The identification of consistent molecular markers of fibrosis
across solid organ transplants, and separation of transcriptomic

differences between native organ and allograft fibrosis, implicate per-
sistentimmune activation asa primary pathological driver of chronic
transplant dysfunction. Inflammation, regardless of the inciting event
(ischemiareperfusioninjury, acute rejection) is a consistent feature of
functional decline in renal™* %, lung**”” and heart® allografts. These
findings serve as a basis for further research into molecular drivers of
allograft fibrosis and the potential for limiting disease progression
through targeted immunosuppression. Our study also demonstrates
the potential of the TOP model to predict longer-term graft dysfunc-
tion frominitial biopsy samples, including therole of therapeutics (for
example, NMP) inimproving graft outcomes®**” and heart allografts’®.
These findings serve as a basis for further researchinto molecular driv-
ers of allograft fibrosis and the potential for limiting disease progres-
sion through targeted immunosuppression.

Our study has several limitations arising from our analysis of PRO-
MAD as a curated atlas of publicly available data. PROMAD provides
evidence of shared molecular signatures of dysfunction across organs;
however, these findings have not yet been explored in complementary
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experimental work. Although we established the effectiveness of
pan-organ signatures to predict multiple allograft pathologies using
aleave-one-dataset-out cross-validation (LOOCV) strategy, and further
validation using AUSCAD, confirmation of our findings in prospectively
recruited cohorts across other transplanted organs would increase con-
fidence in their reliability. Moreover, the lack of detailed phenotypic
data made publicly available, such as specificimmunosuppression
regimens or comprehensive donor histories, limits our ability to fully
account for these variables in the current study. Another limitationis
the detail of sample annotations within PROMAD, which s restricted to
what has been publicly shared, whichis particularly relevant to a diag-
nosis of rejection. However, we anticipate that the sample annotations
made available will enable researchersto further explore the molecular
understanding of different rejection phenotypes, which have distinct
clinical implications®*°,

Variationsin pathology classification have led to misinterpretation
of biomarker performance onisolated external validation datasets****,
acommonissue faced by the transplant research community. To tackle
this challenge, we developed aninteractive web platform for PROMAD
that enables users to assess the performance of proposed models
acrossacomprehensively curated dataset before they progress evalu-
ationin prospectively recruited cohorts. Our atlas provides aresource
that canstandardize the performance evaluation of diagnostic tools for
allograft dysfunction. Finally, regardless of re-processing of all datasets
through standardized pipelines, we have not performed cross-dataset
normalization, instead opting for transfer learning approaches to
analyze across datasets. A fully curated PROMAD atlas now provides
additional opportunities to perform more sophisticated normaliza-
tions or project datasets onto common embeddings that may uncover
more complex transcriptomic associations.

PROMAD providesavaluable resource for the transplantresearch
community, compiling 150 datasets and 12,765 sequencing samples
across the four most commonly transplanted organs, and the capacity
toexplorethelandscape of allograft dysfunction. This study advances
understanding of allograft dysfunction by demonstrating conserved
molecular signatures across organs. PROMAD provides a resource for
robust validation of prospective biomarkers as well as development
of more effective diagnostic tools, risk stratification parameters and
therapeutic targets.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
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Methods

Ourresearchcomplied withallrelevant ethics regulations. The AUSCAD
research protocol subject to ethics approval was approved by the West-
ern Sydney Local Health District Human Research Ethics Committee
(HREC/12/WMEAD/190).

Data curation and creation of the PROMAD

Asearchtoidentify publicly available gene expression datain the Gene
Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) and
ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) was performed
using the following terms: ‘kidney transplant’, ‘liver transplant’, ‘lung
transplant’, ‘heart transplant’ and ‘allograft’. Microarray, RNA-seq
and ssingle-cell RNA-seq technologies were included, revealing a total
of 231 datasets published before September 2022. These datasets,
all derived from human studies, were filtered based on sample size,
quality and availability of clinical metadata. Detailed inclusion and
exclusioncriteriacanbe foundin Extended DataFig. 1. Upon evaluation,
150 datasets met the criteriaand were incorporated into the PROMAD
atlas (Supplementary Table1).

Statistics and reproducibility

Analyzing microarray datasets. We obtained the intensity-level data
for eachincluded dataset from the GEO or ArrayExpress. A log, trans-
formation was used to scale the data, and quantile normalization was
used to normalize sample-specific technical artifacts. Differential
gene expression within each dataset was quantified. Moderated test
statistics were calculated using the eBayes function from the limma
package®. The Benjamini-Hochberg procedure was used to control
for the false discovery rate ata 5% level.

Analysing RNA-seq datasets. Unnormalized count datasets were
obtained from the GEO or ArrayExpress. Genes with no expression
in any sample were filtered from the dataset. The trimmed mean of
m-values (TMM)® was used to normalize library sizes of each sample.
Within each dataset, differential gene expression analysis was per-
formed using limma-voom® to calculate moderated test statistics for
each gene within each dataset. The Benjamini-Hochberg procedure
was used to control for the false discovery rate at a 5% level.

Analyzing single-cell RNA-seq datasets. Unnormalized count data
were obtained from the GEO or ArrayExpress and were scaled using
alog transformation. Cells with no expression across all genes were
filtered, and the remaining cells were annotated using Seurat. In brief,
Seurat uses the Azimuth database to annotate each dataset with cell
types using a dataset appropriate to the organ of interest®*. For cells
annotated asaT cell, we performed subannotationto distinguish CD4*
and CD8" T cells. In brief, we subsetted the integrated atlas for only
Tcells. Using the top 2,000 variable features, we performed principal
component analysis (PCA) reduction and Louvain clustering (resolu-
tion 0.05) onthe k-nearest neighbor graphs (k = 20) generated from the
first five principal components (PCs). On the basis of the expression
of markers, the Louvain clusters were then classified into either CD4
or CD8T cells.

Merging single-cell RNA-seq datasets. To embed the single-cell
transcriptomes into a shared latent space, for each batch the count
matrix was first normalized by the total number of reads and then
multiplied by a10,000scaling factor. The top 2,000 features were
prioritized by their variance across all the single-cell RNA-seq batches.
The cell pairwise anchor correspondences between different single-cell
transcriptome batches were identified with 30-dimensional spaces
from reciprocal PCA®. Using these anchors, the single-cell RNA-seq
datasets were integrated and transformed into a shared space. Gene
expression values were scaled for each gene across allintegrated cells
and used for PCA. For the integration of the organ datasets, k.anchor,

k.filter and k.weight were set to 5,200 and 100, respectively. After
merging all datasets, we performed at-distributed stochastic neighbor
embedding (t-SNE) dimension reduction.

Identifying common differentially expressed genes in datasets. To
combine the moderated test statistics of each gene, across all datasets,
we used the directPA package®. Inbrief, anormal transformation was
applied to the test statistics for each dataset, converting limma test
statistics to normal z-scores. Stouffer’s method was used to combine
the z-scores across all datasets for each gene.

Calculating expected intersection of differentially expressed
genes. To calculate the expected number of overlapping differentially
expressed genes, we first calculated the marginal probabilities of a
gene being differentially expressedineach organ. The product of these
marginal probabilities was then used to determine the expected num-
ber of genes that should be common among organs, by chance alone.
A chi-squared test was used to determine if the number of observed
overlapping genes was different than what was observed.

Pathway analysis. In the process of aggregating a set of genes across
datasets (whether commonor unique), the directPA pipeline returned
acombined z-score for each gene. This combined statistic was a direc-
tional representation of change between allograft dysfunction and
stably functioning grafts across datasets. To identify sets of genes
that were changing, Wilcoxon rank-sum tests were performed on the
combined Pvalues that were determined for each gene withinour gene
setanalysis, returning asignificance value for KEGG®® and Reactome®’
pathways that were enriched in the dysfunction of interest. Where we
wanted to infer a directional change, a gene set enrichment analysis
(GSEA) was performed on those ranked lists of genes, using the clus-
terProfiler package in R as well as the KEGG and Reactome databases.

Determining cell-type-specific gene set. To establish which cell type
expressed genes found in our meta-analysis, we made use of the Cepo
package, which identifies cell identity genes for cell types®®. Treating
each sample as a distinct dataset, genes were ranked based on their
relative importance to a particular cell type using Cepo statistics.
These statistics were then clustered using the Pearson correlation
coefficient to evaluate the specificity of the cell type signal within the
allograft. Subsequently, using the Cepo statistics, we used a Wilcoxon
rank-sum test to compute the enrichment of the genes identified in
our meta-analysis across different cell types. We compared the results
across sample conditions, namely acute rejection and stably function-
ing grafts.

TOP framework

To address the challenge of building a robust and predictive model
across different datasets and platforms, we developed the TOP frame-
work. TOP isamodeling approach that constructs reference-free bio-
markers, which are required to yield consistent predictions across
datafromdifferent platformsin the absence of internal normalization
standards®* 2. An extension of our previous model, CPOP?, this trans-
ferlearning framework is designed to construct prediction models that
(1) are self-normalizing and so can be applied across platforms without
relying on traditional batch correction methods and (2) ensure thatall
organs contribute equally to the model construction. This predictive
framework s available on the Bioconductor Project: https://bioconduc-
tor.org/packages/release/bioc/html/TOP.html.

Inbrief, the TOP framework starts by defining a set of features that
consistently change across all the datasets used to train the model. The
top 50 genes that are most differentially expressed are selected for
subsequent analysis and used to create alog-ratio matrix (Supplemen-
tary Methods). To identify important features for the model, the fold
changeforeachratioinrelation toabinary outcome was calculatedin
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alltheindividual datasets used for training. The fold changes were then
combined using a weighted mean scaled by their variance, to ensure
that selected features were changing in all organs (Supplementary
Methods). The scores were then used to weight features in a lasso
regression model. The lasso was chosen for its ability to shrink coef-
ficients to zero, producing sparse models.

Motivation for TOP framework. With the goal of creating a pan-organ
model from a diverse range of publicly available datasets, we devel-
oped a method of modeling omics data across organs. Traditional
approachestobuild models across datasets fallunder the umbrella of
batch correction. However, within our training datasets, both batch and
organ are perfectly confounded. Hence, traditional batch correction
methods would not be applicable.

Our objective was to create a comprehensive pan-organ model
capable of classifying allograft rejection instances across all trans-
planted organs. Considering that our data collection encompassed
heart, lung, liver and kidney transplant recipients, it was crucial for
the model to achieve equilibrium among all organs to be considered
genuinely pan-organ. Consequently, we designed the TOP framework.
This framework seeks to accomplish three primary goals:

1. Maintain balance among all organs in the framework, prevent-
ing overemphasis on the more abundant kidney transplant
datasets while disregarding smaller ones.

2. Assign equal weight to each study in our atlas, avoiding dis-
proportionate learning from datasets with particularly large
sample sizes.

3. Yield transparent and interpretable coefficients, thereby fa-
cilitating a smooth transition to the identification of potential
biomarkers.

TOP methodology. Suppose we want to fit a model across datasets,
then X; = X;, X5, X;, ... X;, where X; € R™P, First, we define a set of
features SO to be the intersection of features in X;. Then, we can
redefine X; as X). Let a vector y € R" represent a patient’s clinical
outcome (for example, biopsy-proven rejection). We, therefore, can
defineamoderated test statistic for each feature within X using the
limma package. The moderated test statistic is assumed to follow a
Gaussiandistributionand sois converted to az-score and subsequent
Pvalue®?, Stouffer’s method of combining P values is then used to
determine features that are important across all datasets. These fea-
tures are ranked according to combined P value, and, by default, the
top 50 areincluded for subsequent analysis. Consequently, we subset
X;once more, incorporating only the top 50 features in each dataset,
resulting in an updated matrix X;(top50).

Creating the log-ratio matrix. The ‘log-ratio matrix’ was first proposed
by Wang et al.”. In brief, a matrix Z of dimension R¥<@ where and
each column of Z represents the pairwise difference between two
log-transformed columns in X;qops0) € R*P. Specifically, each column
of Z consists of all log-ratio features for 1 < / < m < p, signifying that
each columninthe Z matrixis the log-ratio of the expression values of
two features. For the given log-ratio matrix Z e R*<9, we denote each
row of the matrix as z;for samplei=1,... k.

Following the methodology outlined above, we proceed to calcu-
late the log fold change for each feature in relation to the binary out-
come y € R¥within each Z matrix. Keep in mind that there may be up
to Z, matrices, with k signifying the total number of datasets. For every
matrix z;, where i =1, ..., k, we determine the log fold change by con-
trasting the expression values of each feature between the two groups
delineated by the binary outcome y.

Calculating feature weights. To address the concern that larger data-
sets might overpower the signal from smaller datasets, we can calculate
weights for each dataset i = {1,2, ..., k} based on their respective sample

sizes. This approach ensures that datasets with a larger number of
samples do not disproportionately influence the overall analysis. To
calculate the weighted mean (u,,) of thelog fold changes, we first assign
aweight (w;) to each dataset, corresponding to the inverse of its sample
size. The weighted mean (u,,) for each dataset i is then computed as
follows:

k
ey Wi X

Hw = X
Zi:l w;
where x;denotes the log fold change for dataset i, and k represents the
total number of datasets.

Similarly, to determine the weighted variance (¢2), we use the
formula:

Z:;l (wi * (Xi - ”w)z)
Zf;l wi

By employing these weighted calculations, we ensure that the
analysis accommodates the varying sizes and characteristics of the
datasets from different organ transplant cohorts, ultimately providing
amore robust and reliable assessment of the log fold changes across
all datasets.

Next, we compute atest statistic for each ratio, whichis obtained
by dividing its mean change by its variance. Additionally, to ensure
stability and mitigate the impact of extreme values, we introduce a
fudge factor in the denominator. We denote it as Q, (0% ), where Qg o
denotesthe 90th quantile function applied to the weighted variances
(02).Consequently, the test statistic T ;for eachratio j canbe calculated
using the following formula:

02 =

Ti= ZL
o+ Qo.0(0%)

where p,,;represents the weighted mean of thelog fold change for ratio

Jj={,2,...q}. oﬁvj denotes the corresponding weighted variance,

and g signifies the total number of ratios.

Byincorporating the fudge factor, we account for potential outli-
ersand ensure that the test statistic remains robustin the presence of
features with small variances across datasets. Thisapproach enhances
the reliability of the analysis, contributing to a more accurate assess-
ment of the relationships between features and clinical outcomes.

Finally, to smooth the effects of weighting features, we take the
square root of each test statistic T ;, giving us a transformed weight of
each feature w.

Calculating organ (sample) weights. To account for the balance
among the four organ transplants discussed earlier, we proceed to
compute aweight for each observation. We can define the weight (w;)
for each organ as proportional to the inverse of its number of

datasets (n;): w; = % fori=1,..,k. This weighting strategy, com-

bined with additional smoothing, ensures that no single organ
transplant type disproportionately influences the results while
accounting for the inherent right skew in our training set.

Building the lasso model. Both the feature and sample size weights
areincorporated into aweighted lasso regression model. The lasso was
chosen for the ability to force features out of the model, providing
concise estimates of feature importance. The lasso is built by first
concatenating the log-ratio matrices z;fori={1,2, ..., k}.

2
k q q

By, Z| wr, w, A) = Eggquwsi (J’i —Bo-2, Zl-wajﬂj) +1) 185l
izl p=} =

j=
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Building the pan-organ transfer learning model. To create arobust
pan-organ model capable of accurately classifyinginstances of allograft
rejection across all transplanted organs, we amalgamated rejection
phenotypes across organs. This addressed the challenges posed by
the lack of uniform definitions of organs and the evolution of his-
topathological guidelines over time. Specifically, we consolidated
T-cell-mediated rejection (TCMR), antibody-mediated rejection
(ABMR) and mixed phenotypes under one comprehensive definition
of rejection. With this composite outcome, a transfer learning model
was constructed using the TOP framework. This model was trained
using datasets fromkidney, lung, liver and heart transplantation. The
TOP framework was used to balance feature selection and sample
weighting to ensure that each organ was contributing equally to the
model, despite disparities in dataset sizes.

Transfer learning model evaluation. Both the pan-organ and organ-
specific models were evaluated using an LOOCV strategy, whereby
models were systemically trained on all available datasets, excluding
atesting dataset. AUC was used to quantify model performance.

AUSCAD

Study overview. The AUSCAD is a single-center, prospectively
recruited observational cohort study at Westmead Hospital in Aus-
tralia. Consent was obtained before transplantation with procedures
approved by the Western Sydney Local Health District Human Research
Ethics Committee (HREC/12/WMEAD/190). Demographic and clinical
data, aswell asblood and kidney biopsies, were collected atimplanta-
tionand at 3 months after transplantation. No statistical methods were
used to pre-determine sample sizes, but our sample sizes are similar
to those reported in previous publications available in our PROMAD
atlas (Supplementary Table1).

Sample collection and histopathological evaluation. Two biopsy
cores were taken at each protocol or for-cause biopsy, with one used
for histology and the other for bulk RNA-seq (described below). Biopsy
coresreserved for histology underwent hematoxylin and eosin, peri-
odicacid-Schiff, Masson’s trichrome and C4d staining at the Institute of
Clinical Pathology and Medical Research (Westmead Hospital) before
evaluation by asingle histopathologist, using the Banff2019 schema®.

RNA isolation and sequencing. Kidney biopsy specimens were left
in RNAlater (Sigma-Aldrich) overnight at 4 °C before removal and
storage at —80 °C until RNA extraction. Specimens were chemically
and physically lysed by using 2-mercaptoethanol (Sigma-Aldrich)
and TissueLyser Il (Qiagen), followed by RNA extraction using AllPrep
DNA/RNA/microRNA and MiniElute clean-up kits (Qiagen). Peripheral
blood was collected into PAXgene Blood RNA tubes (Qiagen), left at
room temperature for 5 h and stored at -80 °C until RNA extraction.
RNA was extracted by using a PAXgene Blood miRNA Kit (Qiagen). All
RNA samples were frozen and stored at —80 °C and then sent in bulk
to the Australian Genome Research Facility. Sample quality control
and library preparation were performed in-house, and the resultant
libraries were sequenced using the NovaSeq 6000 platform (Illumina)
with 100-bp, paired-end read length.

Downstream analysis and normalization. Raw FASTQ files were first
trimmed and aligned using the GRCh37-hg19 reference genome. The
resulting data were then organized into agene counts matrix for each
sample. The bulk RNA-seq data underwent initial filtering to remove
reads too low for further analysis’. This was followed by normalization
using the TMM method®.

External validation
Liquid biopsy validation. We evaluated our pan-organ liquid biopsy
model on prospectively collected blood samples. Outcomes associated

with each blood sample were assessed using corresponding biopsy
scores. The AUSCAD validation set also used a composite definition
of rejection (using Banff 2019 criteria®).

Data-derived gene set validation. To evaluate the clinical relevance of
our data-derived gene set for global allograft dysfunction and the BHOT
panel, we conducted a validation study using the AUSCAD cohort. We
constructed three pan-organ models using our TOP method to predict
DGF (defined as requiring dialysis within 1 week of transplantation),
allograft rejection (a composite value as described above) and fibro-
sis, based on biopsy data from 7, 54 and 14 PROMAD atlas datasets,
respectively. Instead of performing feature selection, we incorporated
features from our data-derived gene set (n=500) or the BHOT panel
(n=770) in model development. Our DGF model was assessed in 136
AUSCAD pre-implantation biopsies. For allograft rejection, 121 biopsies
taken 3 months after transplantation were analyzed. The fibrosis model
was tested on 86 biopsies with interstitial fibrosis and tubular atrophy
(IFTA) scores over 10% and no concurrent rejection, as determined by
asingle pathologist. AUC was used as an evaluation metric to compare
model performance.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The data used in this manuscript are publicly available on the Gene
Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) and Array-
Express (https://www.ebi.ac.uk/arrayexpress/). Theaccession codes for
eachindividual study are suppliedin Supplementary Table 1. Further-
more, all processed data used in this study are available for download
at https://shiny.maths.usyd.edu.au/PROMAD/.

AUSCAD RNA-seq data, derived from peripheral blood samples col-
lected 3 months after transplant, are publicly accessible in the Gene
Expression Omnibus database (accession code GSE248752). RNA-seq
datafrombiopsy samples taken before graft re-perfusion are available
under accession code GSE261240, and those from biopsy samples
obtained 3 months after transplant can be found under GSE261892.

Code availability

The code used to analyze all datasets presented in this manuscript and
in the figures is available on GitHub (https://github.com/Harry25R/
POAD Figures).
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Extended Data Fig. 1| Schematic of the literature review workflow for
transplant omics datasets. A systematic search of the GEO and ArrayExpress
databases using terms related to heart, lung, liver, and kidney transplants,
yielded 13,419 datasets. Datasets underwent scrutiny for inclusion, excluding
non-human or those lacking proper controls, defined as stable functioning
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grafts. Data were then extracted and normalized using various methods

appropriate to the data type. The PROMAD repository was created, comprising

168 processed datasets available for research access, with 150 transcriptomic

datasets selected for our study. Non-coding region datasets, while excluded from
this study, were also included in PROMAD.
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Extended DataFig. 2 | Clustering of CEPO statistics. Correlation heatmap of cell-identity gene statistics generated from Cepo (Kim et al., 2021) for each cell type
across tissues and datasets in the pan-organ allograft rejection atlas. The heatmap is hierarchically clustered by the similarity of correlation profiles. Colour bars
denotetissue origin or cell type of each sample.
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Extended DataFig. 3 | Liquid biopsy model from whole blood and PBMCin
acute allograftrejection. A. Heatmap of top 50 genes differentially expressed in
across all PBMC datasets. Each cellis coloured by normal score in each dataset.

B. Heatmap of top 50 genes differentially expressed across all whole blood
datasets. Each cellis coloured by normal score in each dataset. C. Scatter plot of
combined association statistics for allograft rejection in whole blood and PBMC.
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Extended Data Fig. 4 | Training a liquid biopsy model using PROMAD.
A.Boxplot of increasing number of ratios that are required to predict acute
allograft rejection from liquid biopsy samples. Each point is an evaluation of
model performance onanindependent dataset. Points that are joined by aline
represent the same dataset. Box plots show Q1, median and Q3, and the lower and
upper whiskers show Q1 - 1.5 xIQRand Q3 + 1.5 x IQR, respectively. B. Bar plot of
model coefficients for our liquid biopsy model. C. Dot plot of liquid biopsy model
performance onthe AUSCAD cohort with aloess smoothed curve representing
the mean trend as the number of training datasets increases. The shaded area
around the curve indicates the 95% confidence interval, reflecting the variability
around the estimated mean trend. D. A pair of ROC curves comparing model
performance on the AUSCAD cohort. Both models are trained across multiple
organs, however their integration algorithms differ. TOP is coloured yellow, and
ComBatis coloured blue. E. Aboxplot of model performance across peripheral
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blood datasets within PROMAD (n = 23 datasets from 2422 biologically
independent patient samples), when tissue weighting is applied to the TOP
algorithm. Each point is an evaluation of model performance on anindependent
dataset. Box plots show Q1, median and Q3, and the lower and upper whiskers
showQ1-1.5xIQRand Q3 +1.5xIQR, respectively. A 3-way ANOVA using organ,
dataset and weighting strategy was performed to assess if weighting strategy
impacted AUC. F. Boxplot comparison of model performance across all datasets
within PROMAD. We compare three integration algorithms (Combat, Quantile
normalization and TOP). We split the model performance by technology to
demonstrate TOP’s ability to cross technologies more easily. Box plots show Q1,
median and Q3, and the lower and upper whiskers show Q1 - 1.5 xIQRand Q3 + 1.5
xIQR, respectively. A 2-way repeated measures anova was performed to test the
impact of integration strategy on AUC.
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to stable functioning grafts. Each dot represents one reactome pathway where
p-values were adjusted for multiple comparisons using the benjamini-hochberg
correction. D. Dot plot of a two-sided Wilcoxon-rank sum test for pathways
associated with stable functioning biopsies that became fibrotic compared with
biopsies that remained stable. Each dot represents one reactome pathway where
p-values were adjusted for multiple comparisons using the benjamini-hochberg
correction.
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Extended Data Fig. 7| Pan-Organ fibrosis gene set at single cell resolution. dataset (n = 3) from the PROMAD atlas. B. Heatmap of fibrosis related gene (from
A.ROC plot predicting biopsy proven fibrosis (IFTA > 10%) in protocol biopsies Fig.3A) expressionin minor cell types of the pan-organ allograft dysfunction
from the AUSCAD cohort. Yellow = model trained on transplant fibrosis dataset atlas C.tSNE projection of the cells of the pan-organ allograft dysfunction atlas.
(n=14) from the PROMAD atlas. Blue = model trained on transplant fibrosis Single cells are coloured by minor cell types, as defined by our PROMAD atlas.
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Extended Data Fig. 8 | Quantitative analysis reveals aset of genes associated
with Global Indicators of Dysfunctionin Allografts. A. Density plot of
association statistics for global allograft dysfunction, and genes within the Banff
Human Organ Transplant (BHOT) Nanostring panel are coloured in orange.

B. Density plot of association statistics for global allograft dysfunction, and
genes within the data-driven gene set panel are coloured in red. C. A3D scatter
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plot of association statistics for delayed graft function (DGF), allograft rejection
and fibrosis. Each point is a gene, coloured by p-value for its significance to be
upregulated in each condition. D. Dot plot of a two-sided Wilcoxon-rank sum test
for our data-driven gene set using the reactome database. Each dot represents
one reactome pathway where p-values were adjusted for multiple comparisons
using the benjamini-hochberg correction.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.
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Data collection  No software was used for the collection of data. All data was downloaded from the GEO portal using the GEOquery package in R, version
2.64.2

Data analysis Data was analysed using R version 4.2.0. limma version 3.54.0, directPA version 1.5, clusterProfiler version 4.4.4, Cepo version 1.2, TOP
version 0.99.0.
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- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The data used in this manuscript is publicly available on the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) and ArrayExpress (https://
www.ebi.ac.uk/arrayexpress/). The accession codes for each individual study are supplied in Supplementary Table 1. Further, all processed data used in this study is
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available for download at https://shiny.maths.usyd.edu.au/PROMAD/.

AUSCAD RNA sequencing data, derived from peripheral blood samples, collected 3-months post-transplant, is now publicly accessible in the GEO database
(accession number GSE248752). RNA sequencing data from biopsy samples taken prior to graft reperfusion are available under the accession code GSE261240, and
those from biopsy samples obtained three months post-transplant can be found under GSE261892.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Our study collected the biological sex of the recipient and has been reported in the associated data tables. Gender
information was not collected as part of the study.

Reporting on race, ethnicity, or  Our study did not accurately collected the race or ethnicity of the recipient. Moreover, we are unable to provide specific

other socially relevant donor characteristics due to patient privacy.
groupings
Population characteristics We are unable to provide specific donor characteristics due to patient privacy. However, we have included relevant recipient

characteristics that are important to our study. Specifically, we have included comparisons of clinical data between rejection
and control groups including biological sex.

Recruitment Patients were prospectively recruited from Westmead Hospital in Sydney, Australia. All patients were consented by the on-
call physician at the time of the transplant for their inclusion in the study. There was no additional criteria for recruitment.

Patients who were recruited received that same standard of care as those that did not as this was an observational study.

Ethics oversight Western Sydney Local 221 Health District Human Research Ethics Committee (HREC/12/WMEAD/190)

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size A sample size ranged due to patient drop out and sample collection. Initially we had 136 patients that had pre-implant biopsies collected. 121
of those patients were followed up 3-months post transplantation. Blood was collected and sequenced in 70 of those 121 patients, as blood
collection was not the primary aim of the AUSCAD study. Our observational study is still undergoing recruitment however we have already
achieved sample size similar to other such studies in our PROMAD atlas (Supplementary Table 1)

Data exclusions  There was no exclusion criteria after samples had been collected in our study.

Replication All code required to process the raw data and reproduce associated figures has been provided in the manuscript.

Randomization  Our study measured the occurrence of a particular pathology in organ transplant patients. All patients recieved the same standard of care and
samples were collected at the same time. Therefore, randomization was not relevant to our study.

Blinding During data analysis, all patient data was deidentified to authors. When assessing model performance, predictions were married with the
outcome as defined by a single pathologist, and evaluation metrics calculated.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods
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Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
was applied-
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assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.




